1057-16-228 Andrew Conner* (aconner@uoregon.edu), Department of Mathematics, University of Oregon, Eugene, OR 97403, and Peter Goetz (pdg11@humboldt.edu). A_{∞} structures and \mathcal{K}_2 algebras. Let K be a field and A be a connected graded K algebra, finitely generated in degree 1. Let (Q, ∂) be a graded

Let K be a field and A be a connected graded K-algebra, finitely generated in degree 1. Let (Q_{\bullet}, ∂) be a graded projective resolution of $_{A}K$ by left A-modules. Let $E(A) = H^{*}(\operatorname{End}(Q_{\bullet}))$ be the associated bigraded Yoneda algebra of A. A theorem of Kadeishvili states that E(A) admits canonically defined higher multiplications which give E(A) a minimal A_{∞} -algebra structure. If A is Koszul, all higher multiplications on E(A) are zero. \mathcal{K}_{2} algebras are a natural generalization of Koszul algebras. In this paper, we exhibit a family B_{n} of \mathcal{K}_{2} algebras with quadratic and cubic relations such that an A_{∞} -structure on $E(B_{n})$ provided by Kadeishvili's theorem has nonzero higher multiplications for all i, $2 \leq i \leq n$. (Received January 23, 2010)