1053 - 42 - 244

D. Aalto (daniel.aalto@utu.fi), L. Berkovits (lberkovi@mail.student.oulu.fi), O. E. Maasalo (outi.elina.maasalo@tkk.fi) and H. Yue* (yueh@trine.edu). John-Nirenberg lemma II for a doubling measure.

In the paper that John and Nirenberg (1961) introduced the BMO space and characterized functions in the space in terms of a related distribution inequality, they also discussed the corresponding issues for functions f being integrable in a given cube Q_0 and satisfying

$$K_{f} := \sup\left\{\sum_{i} |Q_{i}|^{1-p} \left[\int_{Q_{i}} |f - f_{Q_{i}}| d\mu\right]^{p}\right\}^{1/p} < \infty$$
(1)

where the supremum is taken over all collections $\{Q_i\}_{i=0}^{\infty}$ with Q_i being subcubes of Q_0 such that $\bigcup Q_i = Q_0$ with disjoint interiors. We call the space with the norm defined by (??) the John-Nirenberg space with exponent p and denote it by $JN_p(Q_0)$.

The John-Nirenberg lemma II claims that if f is a function in $JN_p(Q_0)$, then $f - f_{Q_0}$ is in weak $L^p(Q_0)$.

We discuss the space JN_p and the lemma in the context of a doubling metric measure space.

(Received September 06, 2009)