1053-37-85Ale Jan Homburg (a.j.homburg@uva.nl), Science Park 904, 1098 XH, Amsterdam,
Netherlands, and Todd Young* (young@math.ohiou.edu), Department of Mathematics, 321
Morton, Athens, OH 54701. Bifurcations of random differential equations with bounded noise on
surfaces.

In random differential equations, with bounded noise, minimal forward invariant (MFI) sets play a central role since they support stationary measures. We study the stability and possible bifurcations of MFI sets. In dimensions 1 and 2 we classify all minimal forward invariant sets and their codimension-one bifurcations in bounded noise random differential equations under generic conditions.

We find in 1 dimension that there is only 1 codimension-one bifurcation, which is an analog of the saddle-node bifurcation. In 2 dimensions we show that there are 3 distinct codimension-one bifurcations. (Received August 19, 2009)