1053-35-326

G. C. Verchota* (gverchot@syr.edu), Dept. Mathematics, Syracuse University, Syracuse, NY 13244. Linear elliptic operators requiring indefinite terms in the quadratic Dirichlet form in order for a full coercive estimate to hold.

Certain 4th order linear real constant coefficient elliptic differential operators

 $L = \sum_{|\alpha|=|\beta|=2} a_{\alpha\beta} \partial^{\alpha+\beta}$ are shown to satisfy a coercive integro-differential estimate

$$c\sum_{|\alpha|\leq 2}\int_{\Omega}|\partial^{\alpha}u|^{2}dX\leq \sum_{|\alpha|=|\beta|=2}\int_{\Omega}a_{\alpha\beta}\partial^{\alpha}u\ \overline{\partial^{\beta}u}dX+c_{0}\int_{\Omega}|u|^{2}dX,\ (c>0)$$

over the full Sobolev space $W^{2,2}(\Omega)$ only when the right side contains quadratic terms that are indefinite, in fact negative definite on an infinite dimensional subspace of $W^{2,2}(\Omega)$. These terms are shown to be necessary even when L, in addition, can be written as a sum of squares of homogeneous 2nd order operators $\sum p_j^2(\partial)$, so that L also has formally positive forms $\sum_j \int_{\Omega} |p_j(\partial)u|^2 dX$. In these cases all formally positive forms are shown to be noncoercive over $W^{2,2}(\Omega)$. (Received September 08, 2009)