Nicholas Werner* (werner@math. osu.edu), Department of Mathematics, The Ohio State University, 231 West 18th Ave, Columbus, OH 43210. Integer-valued Polynomials over Quaternion Rings.
When D is an integral domain with quotient field K, the ring $\operatorname{Int}(D)=\{f(x) \in K[x] \mid f(D) \subseteq D\}$ of integervalued polynomials over D has been extensively studied. We will discuss integer-valued polynomials over certain noncommutative rings. Specifically, let i, j, and k be the standard quaternion units satisfying the relations $i^{2}=j^{2}=-1$ and $i j=k=-j i$, and define $\mathbb{Z} Q:=\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{Z}\}$. Then, $\mathbb{Z} Q$ is a non-commutative ring that lives inside the division ring $\mathbb{Q} Q:=\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{Q}\}$. For any ring R such that $\mathbb{Z} Q \subseteq R \subseteq \mathbb{Q} Q$, we define $\operatorname{Int}(R):=\{f(x) \in \mathbb{Q} Q[x] \mid f(R) \subseteq R\}$. In this talk, we will demonstrate that $\operatorname{Int}(R)$ is a ring (it is non-trivial to verify that $\operatorname{Int}(R)$ is closed under multiplication) and discuss some specific results concerning the ring $\operatorname{Int}(\mathbb{Z} Q)$ and its prime ideals. (Received August 21, 2009)

