Dawn B McNair* (dmcnair@jcsu.edu), 100 Beatties Ford Road, Charlotte, NC 28216. Duals of Ideals in Rings with Zero Divisors.
For a nonzero ideal I of R, we define $I^{-1}=(R: I)=\{x \in Q(R) \mid x I \subseteq R\}$ and call it the dual of I where $Q(R)$ is the complete ring of quotients of R. Much work has been with regard to determining when ($R: I$) is a ring in the case R is a integral domain. This talk will extend those results to dense ideals in rings with zero divisors. We will prove several properties with duals of prime ideals including for a dense prime P of ring $R,(R: P) \neq(P: P)$ if and only if $P R_{P}$ is invertible and P is of the form $P=(R:(1, x))$ for some $x \in Q(R)$. Attention will also be given to duals of ideals in Prüfer and Strong Prüfer rings. Such as if P is a semiregular prime ideal of Strong Prüfer ring R and P is noninvertible then $P^{-1}=(P: P)$ is a ring. (Received September 07, 2009)

