1053-13-201Thomas G Lucas* (tglucas@uncc.edu), Department of Mathematics & Statistics, University of
North Carolina Charlotte, Charlotte, NC 28223. Minimal integral ring extensions.

For a pair of commutative rings $R \subsetneq S$ with the same identity, S is said to be a minimal integral extension of R if S is integral over R and there are no rings properly between R and S. For a given minimal integral extension $R \subsetneq S$, the conductor M = (R : S) is a maximal ideal of R. Three cases occur: (i) M is a maximal ideal of S, (ii) M is contained in exactly two maximal ideals of S, (iii) M is properly contained in a unique maximal ideal of S. With regard to case (ii), if M is contained in two maximal ideals of S and $Ann_R(M) \subseteq M$ with $Ann_R(M) \neq Ann_S(M)$, then S is isomorphic to $R \times R/M$. For case (iii), if M is properly contained in a unique maximal ideal of S and $Ann_R(M) \subseteq M$ with $Ann_R(M) \neq Ann_S(M)$, then S is isomorphic to the ring R(+)R/M (the idealization of R/M over R) if and only if $Ann_S(M)^2 = (0)$. (Received September 03, 2009)