Let K be a field and let X / K be an algebraic variety. The index of X / K is the greatest common divisor of the degrees over K of the points of X. In a simple example such as when X is a plane curve given by an equation $f(x, y)=0$ with $f(x, y)$ in $K[x, y]$, the index is the greatest common divisor of the integers $[K(a, b): K]$, where $f(a, b)=0$, and a, b are in the algebraic closure of K.

After surveying basic facts on the index, we will explain how the index of X / K can be computed in a completely different way, using multiplicities of primary ideals in a singular local ring associated with the variety X . This is joint work with O. Gabber and Q. Liu. (Received September 08, 2009)

