1053-11-136 Eliot P Brenner* (brenn240@math.umn.edu), Vincent Hall, 206 Church Street SE, Minneapolis, MN 55455. Analytic Properties of Residual Eisenstein Series.

We partially generalize the results of Kudla and Rallis on the poles of degenerate, Siegel-parabolic Eisenstein series to residual-data Eisenstein series. In particular, for a, b integers greater than 1, we show that poles of the Eisenstein series induced from the Speh representation $\Delta(\tau, b)$ on the Levi GL_{ab} of Sp_{2ab} are located in the "segment" of half integers X_b between a "right endpoint" and its negative, inclusive of endpoints. The right endpoint is $\pm b/2$, or (b-1)/2, depending on the analytic properties of the automorphic *L*-functions attached to τ . We study the automorphic forms $\Phi_i^{(b)}$ obtained as residues at the points $s_i^{(b)}$ (defined precisely in the paper) by calculating their cuspidal exponents in certain cases. In the case of the "endpoint" $s_0^{(b)}$ and "first interior point" $s_1^{(b)}$ in the segment of singularity points, we are able to determine a set containing *all possible* cuspidal exponents of $\Phi_0^{(b)}$ and $\Phi_1^{(b)}$ precisely for all a and b. In these cases, we use the result of the calculation to deduce that the residual automorphic forms lie in $L^2(G(k)\backslash G(\mathbf{A}))$. (Received August 30, 2009)