1053-05-303 John Freeman, Tomas Schonbek and Wandi Wei* (wei@math.fau.edu), 777 Glades Road, Boca Raton, FL 33431. On a Tennis Ball Problem.
Let $s_{i}>t_{i}(1 \leq i \leq n)$ be positive integers, and let $s=s_{1}+\ldots+s_{n}$. The tennis ball problem we are considering here goes as follows. There are s tennis balls, labeled $1,2, \ldots, s$, to be handled in n turns. At the first turn, t_{1} balls are taken out from the ones labeled $1, \ldots, s_{1}$. At the i th turn $(2 \leq i \leq n), t_{i}$ balls are taken out from the ones that are left in the previous turn and the ones labeled with $s_{1}+\ldots+s_{i-1}+1, s_{1}+\ldots+s_{i-1}+2, \ldots, s_{1}+\ldots+s_{i-1}+s_{i}$. We call the set of the balls taken-out an $\left(s_{1}, \ldots, s_{n} ; t_{1}, \ldots, t_{n}\right)$-set. Our tennis ball problem asks for the number, denoted by $N\left(s_{1}, \ldots, s_{n} ; t_{1}, \ldots, t_{n}\right)$, of possible $\left(s_{1}, \ldots, s_{n} ; t_{1}, \ldots, t_{n}\right)$-sets.

We first characterize $\left(s_{1}, \ldots, s_{n} ; t_{1}, \ldots, t_{n}\right)$-sets in two different ways, and then employ these characterizations to give two formulas for $N\left(s_{1}, \ldots, s_{n} ; t_{1}, \ldots, t_{n}\right)$. For the case $s_{i}=2$ and $t_{i}=1(1 \leq i \leq n)$, our formulas are reduced to the known result: the number of such sets is the $(n+1)$ st Catalan number. (Received September 07, 2009)

