1053-05-30 David Galvin* (dgalvin1@nd.edu), Department of Mathematics, 255 Hurley Hall, University of Notre Dame, South Bend, IN 46556, and Yufei Zhao, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139. The number of independent sets in graphs with small maximum degree.
At most how many independent sets can a graph have? In 2001 Kahn conjectured that for any graph G without isolated vertices, the number of independent sets satisfies

$$
i(G) \leq \prod_{u v \in E(G)}\left(2^{d(u)}+2^{d(v)}-1\right)^{1 / d(u) d(v)}
$$

where $d(\cdot)$ denotes degree. By reducing to a finite search, we prove this bound for all G with maximum degree at most 5 .
Kahn's conjecture is a special case of a 1991 conjecture of Alon: for a d-regular graph G on n vertices, the number of independent sets satisfies

$$
i(G) \leq\left(2^{d+1}-1\right)^{n / 2 d}
$$

In 2001 Kahn proved this conjecture for bipartite graphs, and the full conjecture was recently resolved by Zhao.
In this talk, we will describe both proofs. (Received August 10, 2009)

