integral representation for linearly convex polyhedra and several combinatorial identities. Preliminary report.
Using an integral representation from [1] for functions that are holomorphic in a linearly convex polyhedron with a piecewise smooth boundary

$$
\begin{gather*}
G=\left\{z=\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}: g^{1}(|z|)=-\left|z_{1}\right|+a<0, g^{2}(|z|)=-\left|z_{2}\right|+b<0,\right. \\
\left.g^{3}(|z|)=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-r^{2}<0, r>a, r>b\right\} . \tag{1}
\end{gather*}
$$

we obtain some combinatorial identities.
Theorem. For $0<\alpha<1,0<\beta<1$ the following identities hold:

$$
\begin{align*}
& \frac{\left(s_{1}+s_{2}+1\right)!}{s_{1}!s_{2}!} \sum_{m=0}^{s_{1}} \frac{(-1)^{m}}{s_{2}+m+1}\binom{s_{1}}{m}\left((1-\alpha)^{s_{2}+m+1}-\beta^{s_{2}+m+1}\right) \\
\equiv & (1-\alpha)^{s_{2}+1} \sum_{m=0}^{s_{1}}\binom{s_{2}+m}{m} \alpha^{m}-\beta^{s_{2}+1} \sum_{m=0}^{s_{1}}\binom{s_{2}+m}{m}(1-\beta)^{m}, \tag{2}\\
1 \equiv & \frac{\left(s_{1}+s_{2}+1\right)!}{s_{1}!s_{2}!} \sum_{m=0}^{s_{1}} \frac{(-1)^{m}}{s_{2}+m+1}\binom{s_{1}}{m}\left((1-\alpha)^{s_{2}+m+1}-\beta^{s_{2}+m+1}\right)+ \\
& \alpha^{s_{1}+1} \sum_{m=0}^{s_{2}}\binom{s_{1}+m}{m}(1-\alpha)^{m}+\beta^{s_{2}+1} \sum_{m=0}^{s_{1}}\binom{s_{2}+m}{m}(1-\beta)^{m} . \tag{3}
\end{align*}
$$

Corollary. For $m=0, \ldots s_{1}$ the following identities are valied:

$$
\begin{equation*}
\binom{s_{2}+m}{s_{2}}=(-1)^{m} \frac{\left(s_{1}+s_{2}+1\right)!}{s_{1}!s_{2}!} \sum_{k=m}^{s_{1}} \frac{(-1)^{k}}{s_{2}+k+1}\binom{s_{1}}{k}\binom{k}{m} \tag{4}
\end{equation*}
$$

In the spesial case $m=0$ we recover the formula No. 45 on page 611 in [2].
Bibliography:
[1] Krivokolesko V.P. and Tsikh A.K., Integral Representations in Linearly Convex Polyhedra, Siberian Mathematical Journal, Vol. 46, No.3, 579-593 (2005). Sib. Mat. J, Vol. 46, No.3, 579-593 (2005).
[2] Prudnikov A.P., Brychkov Yu.A., Marithev O.I. Integrals and rows [in Russian], Moskov, Nauka (1981). (Received June 01, 2009)

