1043-20-37 Luise-Charlotte Kappe (menger@math.binghamton.edu), Department of Mathematical Sciences, SUNY at Binghamton, Binghamton, NY 13902-6000, and Gabriela Mendoza* (Gabriela.Mendoza@rcc.edu), Department of Mathematics, Riverside Community College, Riverside, CA 92506. Groups of minimal order such that for given n the n-th powers of elements do not form a subgroup. Preliminary report.
It is well known that the squares of elements in a group do not form a subgroup and that the alternating group on four letters is minimal with this property. For given n, what is the group of minimal order such that the n-th powers of elements do not form a subgroup? For odd n, it can be shown that the dihedral group of order $2 p$ is minimal with this property, where p is the smallest prime dividing n.

If n is even, the situation is more complex. The order of the group of minimal order with this property depends on the odd prime factors of n and the exact 2-power dividing n. With initial guidance from GAP, we determine the groups of minimal order such that the n-th powers do not form a subgroup in case $n=2 k, 4 k$, and $8 k$, where k is odd. (Received July 28, 2008)

