1043-13-131 **Hyman Bass*** (hybass@umich.edu), 2413 School of Education, 610 E. University, Ann Arbor, MI 48109-1259. Revisiting a differential approach to the 2-variable Jacobian Conjecture.

Let $A = k[x_1, \ldots, x_n]$, a polynomial algebra over a char. 0 alg. closed field. Consider an extension, $A \subset B \subset \widehat{A} = k[[x]]$. A generalized Jacobian Conjecture (JC) says that the conditions – (1) *B* is étale over *A*; (2) $B^{\times} = k^{\times}$; and (3) Frac(*B*) is unirational over k – imply that B = A. By (1), *B* is a module over the Weyl Algebra $W = k[x_1, \ldots, x_n, \partial_1, \ldots, \partial_n]$, where $\partial_I = \partial_/\partial x_i$. The Lie algebra \underline{gl}_n lives in *W*, with basis $x_i\partial_j$ ($1 \leq i, j \leq n$). Let \underline{g} be a subalgebra of \underline{gl}_n , with univ. env. algebra $U(\underline{g})$. We showed in (*Commutative algebra, MSRI Publ. 15, pp 69-109*) that: (4) If $\dim_k(\underline{g}) > n$, then *B* is a torsion $U(\underline{g})$ -module. Whence this approach to the JC: Given *B* satisfying (1), (2), and (3), and $f \in B$, we want to show that $f \in A$. Choose \underline{g} as above with $\dim_k(\underline{g}) > n$. Then, by (4), there is a $\phi \neq 0$ in $U(\underline{g})$, such that (5) $\phi f = 0$. We would like to conclude from PDEs like (5) that $f \in A$. We will illustrate attempts to carry out this agenda when n = 2. (Received August 24, 2008)