The class of the extended quadratic residue codes (QR-codes) over the ring \mathbb{Z}_{4} contains very good \mathbb{Z}_{4}-linear codes. It is well known that the Gray images of the QR-codes over \mathbb{Z}_{4} of length 8,32 and 48 are non-linear binary codes of higher minimum Hamming distance than comparable known linear codes.

Utilizing the 3 -transitivity of the permutational part of the automorphism groups of the \mathbb{Z}_{4}-linear QR-codes, we developed a fast algorithm to count the number of codewords of a given symmetrized weight. We were able to compute the minimum Lee and Euclidean distances up to length 104, and the symmetrized weight enumerators for lengths divisible by 8 up to length 80 .

The QR-code of length 80 has minimum Lee distance 26 and minimum Euclidean distance 32. Thus it is a new example of an extremal Type II code over \mathbb{Z}_{4}, and its Gray image is better than any known comparable linear code. (Received August 23, 2008)

