1043-05-71 Zevi Miller* (millerz@muohio.edu), Department of Mathematics and Statistics, Miami University, Oxford, OH 45056, Tao Jiang, Department of Mathematics and Statistics, Miami University, Oxford, OH 45056, and Daniel Pritikin (pritikd@muohio. edu), Department of Mathematics and Statistics, Miami University, Oxford, OH 45056. Separation number of trees. Preliminary report.
Let G be a graph on n vertices. Given a bijection $f: V(G) \rightarrow\{1,2, \ldots, n\}$, let $|f|=\min \{|f(u)-f(v)|: u v \in E(G)\}$. The separation number $s(G)$ of G is then $\max \{|f|\}$ over all such bijection f of G. We study the case when G is a forest, obtaining the following results.

1. Let F be a forest in which each component is a star. Then $s(F)=\frac{n-\mu}{2}$, where μ is the minimum value of $\|X|-| Y\|$ over all bipartitions (X, Y) of F.
2. Let d be the maximum degree of a tree T on n vertices. Then
a) $s(T) \geq \frac{n}{2}-C_{1} \sqrt{n d}$
b) $s(T) \geq \frac{n}{2}-C_{2} d^{2} \log _{d} n$,
where C_{1} and C_{2} are constants as $n \rightarrow \infty$.
We also give constructions showing that the bound a) is asymptotically tight when d is in the range $n^{\frac{1}{3}} \leq d \leq \frac{n}{3}$, while b) is asymptotically tight when d is in the range $n^{q} \leq d \leq n^{\frac{1}{3}}$ where $0<q<\frac{1}{3}$ is any fixed constant and when d is an absolute constant.
(Received August 15, 2008)
