1043-05-20 Gary Chartrand, Linda Lesniak* (llesniak@drew. edu), Donald VanderJagt and Ping Zhang. Recognizable Colorings of Graphs.
Let G be a connected graph and let $c: V(G) \rightarrow\{1,2, \ldots, k\}$ be a coloring of the vertices of G for some positive integer k (where adjacent vertices may be colored the same). The color code of a vertex of G (with respect to c) is the ordered $(k+1)$-tuple code $(v)=\left(a_{0}, a_{1}, \ldots, a_{k}\right)$, where a_{0} is the color assigned to v and for $1 \leq i \leq k, a_{i}$ is the number of vertices adjacent to v that are colored i. The coloring c is called recognizable if distinct vertices have distinct color codes and the recognition number $r n(G)$ of G is the minimum positive integer k for which G has a recognizable k-coloring. Recognition numbers of complete multipartite graphs are determined and characterizations of connected graphs of order n having recognition numbers n or $n-1$ are established. It is shown that for each pair k, n of integers with $2 \leq k \leq n$, there exists a connected graph of order n having recognition number k. Recognition numbers of cycles, paths and trees are investigated. (Received July 01, 2008)

