1048-16-244 Michael Natapov* (mnatapov@indiana.edu), Department of Mathematics, Rawles Hall 116, 831 East 3rd St, Bloomington, IN 47405, and Darrell Haile (haile@indiana.edu), Department of Mathematics, Rawles Hall 116, 831 East 3rd St, Bloomington, IN 47405. On graded polynomial identities of matrices. Preliminary report.

Let $A = M_n(F)$ be a full $n \times n$ matrix algebra over an algebraically closed field F. Given a group G, there are two basic ways to define a G-grading on A, elementary and fine. A G-grading on A is fine if and only if the support of the grading $H = \{g \in G \mid A_g \neq 0\}$ is a subgroup of G and A is isomorphic to the twisted group algebra F^cH for an appropriate two-cocycle $c \in Z^2(H, F^{\times})$. We refer to such group H as a group of central type. Given a fine grading on A supported by a group of central type H, let $F\langle x_{i,g} \mid g \in H, i = 1, 2, \ldots \rangle$ be an associative H-graded free algebra, and T_H be the T-ideal of H-graded polynomial identities of A. Unlike the classical (non-graded) case the relatively free algebra $F\langle x_{i,g} \rangle/T_H$ may or may not be a domain. It is a domain exactly when H is on a precise list of families of nilpotent groups, called Λ . We describe generating set for T_H where H is any group of central type, and the minimal generating sets for groups on the list Λ . (Received February 09, 2009)