Let Z be the ring of integers and Q the field of rational numbers. Suppose that T is a ring which contains Z and A is a ring which contains both Q and T. Then if $f(X)$ is a polynomial in $Q[X]$ we can consider the element $f(t)$ where t is an element of T. We then consider the ring of all polynomials in $Q[X]$ which map T to itself. This ring is well-defined even if T has zero-divisors, or is not commutative. Easy, nontrivial examples can be obtained by letting T be the ring of integral quaternions, the ring of n by n integral matrices, or the ring of integers in a finite algebraic extension of Q . We investigate when such rings are Prufer domains. (Received February 09, 2009)

