1048-13-134 Paul-Jean Cahen* (paul-jean.cahen@univ-cezanne.fr), Bâtiment poincaré, Av. Escadrille Normandie-Niemen, 13397 Marseille, France, and David E. Dobbs and Thomas G. Lucas. *Pointwise minimal extensions.* Preliminary report.

A ring extension $R \subsetneq T$ is said to be a *pointwise minimal extension* if for each $t \in T$, either R = R[t] or $R \subsetneq R[t]$ is a minimal extension (that is, there is no proper intermediate ring between R and R[t]). As for minimal extensions, if $R \subsetneq T$ is a pointwise minimal extension, we have the following properties: 1) either T is integral over R, or R is integrally closed in T. 2) There exists a maximal ideal M of R, the *crucial maximal ideal*, such that $R_N = T_N := T_{R\setminus N}$ for each maximal ideal $N \ne M$ and $R_M \subsetneq T_M$ is a pointwise minimal extension. 3) If $R \subsetneq T$ is a pointwise minimal integral extension, the crucial maximal ideal is the conductor M = (R : T). (Received February 04, 2009)