Manuel E. Lladser* (lladser@colorado.edu), The University of Colorado, Department of Applied Mathematics, ECOT Room \#232 /or PO Box 526 UCB, Boulder, CO 80309-0526. Minimal Markovian embeddings of non-Markovian random strings. Preliminary report.
Let A be a finite set and X a sequence of A-valued random variables. We characterize a wide class of adapted embeddings of X (i.e. sequences of the form $R\left(X_{1}\right), R\left(X_{1}, X_{2}\right), R\left(X_{1}, X_{2}, X_{3}\right)$, etc with R a transformation over finite length sequences) that result in a first-order homogeneous Markov chain. For any transformation Q over finite length sequences, we show there exists a unique coarsest refinement R of Q in this class such that $R\left(X_{1}\right), R\left(X_{1}, X_{2}\right), R\left(X_{1}, X_{2}, X_{3}\right)$, etc is Markovian. (By coarsest refinement we mean that $R(u)=R(v)$ implies $Q(u)=Q(v)$ and that R is a deterministic function of any other refinement of Q that leads to a Markov process.) We propose one particular embedding R that is amenable for tracking the generating functions of various statistics associated with the occurrence of regular patterns (i.e. patterns described by a regular expression on the alphabet A) in X. A toy example of a non-Markovian sequence of 0 's and 1's is analyzed thoroughly and - despite all expectations for normality - discrete asymptotic distributions are established for the average number of 1's in X_{1}, \ldots, X_{n}, as n tends to infinity. (Received August 04, 2007)

