Bruce Solomon* (solomon@indiana.edu), Math Department, Indiana University, Bloomington, IN 47405. Symmetric planar intersections characterize quadrics among certain tubes in \mathbf{R}^{3}. Preliminary report.
Suppose a smooth surface X in \mathbf{R}^{3} has the following property: Every compact, transverse intersection of X with a plane is centrally symmetric, i.e., invariant under reflection through its center of mass. Some 90 years ago Blaschke proved that a positively curved surface with this property must be quadric. But negatively curved quadrics have the same property-does it characterize them too? We delineate a broad class of tubes that includes all convex cones and surfaces of revolution, and prove that within this class, the answer is yes. Our method seems to produce a new global affine invariant of convex plane loops. As an application, we deduce that tubes in our class admit skewloops-loops having no pair of parallel tangent lines-iff they are not quadric. (Received August 02, 2007)

