1037-11-41 **Ted Chinburg*** (ted@math.upenn.edu), Dept. of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6395, and **Hendrik W Lenstra** (hwl@math.leidenuniv.nl), Mathematisch Instituut, Universiteit Leiden, Postbus 9512, 2300 RA Leiden, Netherlands. Number fields having the same Galois closure over Q. Preliminary report.

This talk will be about number fields N_1 and N_2 which have the same Galois closure over \mathbb{Q} . It was proved by Chinburg, Hamilton, Reid and Long that if there is a place v of \mathbb{Q} which splits into exactly $[N_i : \mathbb{Q}] - 1$ places in N_i for i = 1, 2then N_1 and N_2 must be isomorphic. This implies that a number field N in which some place v splits of \mathbb{Q} into exactly [N : Q] - 1 places is determined by its zeta function. In this talk I will discuss some other results of this kind, in which one puts a condition on how v splits in N_1 and N_2 and then deduces that N_1 and N_2 are extensions of small degree of isomorphic subfields. Some applications to zeta functions and to lengths of geodesics on arithmetic hyperbolic manifolds will be mentioned. (Received January 11, 2008)