1077-VJ-2762 Sean D Cox* (sean.cox@uni-muenster.de). Compactness properties of the second uncountable cardinal.

Gödel's Compactness Theorem for (finitary) first order logic states: Any inconsistent collection of sentences has a *finite* subcollection which is inconsistent. In modern terminology: the countably infinite cardinal \aleph_0 —i.e. the least infinite cardinal—is a *strongly compact cardinal*. The next few cardinals—such as the 1st and 2nd uncountable cardinals—can never be strongly compact (assuming the Axiom of Choice). However, it is possible that the 2nd uncountable cardinal (denoted \aleph_2) exhibits properties resembling strong compactness. This occurs especially in the presence of *Forcing Axioms*. I will discuss some recent research surrounding Forcing Axioms and compactness properties of the 2nd uncountable cardinal (Received September 22, 2011)