Fibonacci and Lucas numbers.
The Fibonacci numbers F_{k} are defined by the recurrence $F_{k}=F_{k-1}+F_{k-2}$ with $F_{0}=0$ and $F_{1}=1$; the first few terms are $0,1,1,2,3,5,8,13,21,34, \ldots$. The Lucas numbers L_{k} satisfy the same recurrence, but with $L_{0}=2$ and $L_{1}=1$; the sequence begins $2,1,3,4,7,11,18,29,47,76, \ldots$.

In this talk, I will begin by recalling formulas for F_{k} and L_{k} in terms of the golden ratio $\varphi=(1+\sqrt{5}) / 2$. Then I will explain how to evaluate the infinite products

$$
\prod_{n=1}^{\infty}\left(1+\frac{1}{F_{2^{n}+1}}\right)=\frac{3}{2} \frac{6}{5} \frac{35}{34} \cdots=\frac{3}{\varphi}, \quad \prod_{n=1}^{\infty}\left(1+\frac{1}{L_{2^{n}+1}}\right)=\frac{5}{4} \frac{12}{11} \frac{77}{76} \cdots=3-\varphi
$$

A preprint is available at http://arxiv.org/abs/1106.4246. (Received September 22, 2011)

