1077-VJ-1409 Oleg Lazarev* (olazarev@princeton.edu). Distribution of Missing Sums in Sumsets.
For any finite set of integers A, define its sumset $A+A$ to be $\{x+y: x, y \in A\}$. In a recent paper, Martin \& O'Bryant studied sum-dominant sets, where $|A+A|>|A-A|$. They prove a positive percentage of all sets are sum-dominant, and investigate the distribution of $|A+A|$ given the uniform distribution on subsets $A \subseteq\{0,1, \ldots, n-1\}$. They also conjecture the existence of a limiting distribution for $|A+A|$ and show that the expectation of $|A+A|$ is $2 n-11+O\left((3 / 4)^{n / 2}\right)$.

Using a graph-theoretic framework, we derive an explicit formula for the variance of $|A+A|$ in terms of Fibonacci numbers. We also prove exponential upper and lower bounds (independent of n) for the distribution of $|A+A|$. These bounds are based on bounds on probabilities like $P\left(k+a_{1}, \cdots\right.$, and $\left.k+a_{m} \notin A+A\right)$, which we show are approximately exponential in k for fixed a_{1}, \cdots, a_{m}. Finally, we show that $P(k, k+1, \cdots, k+m \notin A+A)$, the probability of $A+A$ missing a block of consecutive elements, is approximately $(1 / 2)^{(k+m) / 2}$ for large m, k. This approximation implies that essentially the only way for $A+A$ to miss a consecutive block of $m+1$ elements starting at k is to miss all elements up to $k+m$. (Received September 19, 2011)

