close calls for Fermat's last theorem. Preliminary report.
This talk will demonstrate how a program written in Octave (a freeware version of Matlab) can be used to generate natural numbers $n>2, a, b$ and c such that $\mathrm{f}\left(a^{n}+b^{n}\right)=\mathrm{f}\left(c^{n}\right)$, where $\mathrm{fl}(x)$ is the floating-point representation of x on a computer. Although Fermat's Last Theorem has been proven by Wiles to show that there are no natural number solutions for $n>2, a, b$ and c such that $a^{n}+b^{n}=c^{n}$, this Octave program shows there are many "close calls" such as the example $\mathrm{fl}\left(18494^{5}+33025^{5}\right)=\mathrm{fl}\left(33381^{5}\right)$ on a TI-84 graphing calculator. This talk will also discuss the conjecture that for any $\epsilon>0$ and natural number $n>2$, there exist natural numbers a, b and c such that $\left|a^{n}+b^{n}-c^{n}\right| / c^{n}<\epsilon$. (Received September 22, 2011)

