1077-65-996 Oksana Bihun* (obihun@cord.edu). A Projective Method for Numerical Solution of Differential Equations.
We solve boundary and eigenvalue problems for ordinary and partial linear differential equations by projecting their solution spaces onto an n-dimensional space of algebraic or trigonometric polynomials H_{n}, which we identify with \mathbb{R}^{n} via an isomorphism $\psi: H_{n} \rightarrow \mathbb{R}^{n}$. Let A be a differential operator from the enveloping algebra of $\oplus_{i=1}^{d}\left\{1, x_{i}, \frac{\partial}{\partial x_{i}}\right\}$ whose domain is a subset of a suitable Hilbert space H. The projection $P_{n}: H \rightarrow H_{n}$ is defined via Lagrangian interpolation or using partial sums of a Fourier series. The differential equation $A u=f$ is reduced to a system of linear equations $A_{n} u_{n}=f_{n}$, where $A_{n} \in \mathbb{R}^{n \times n}$ is a representation of $A, f_{n}=\psi P_{n} f$, and $u_{n} \in \mathbb{R}^{n}$ approximates the projection $\psi P_{n} u$ of a solution u. The dimension of the solution space of the reduced problem depends on the rank of the representation A_{n}. We prove several formulas that allow to compute the rank of matrix representations of certain linear differential operators. We prove approximation estimates and perform numerous numerical tests, which show a fast convergence rate and high accuracy of the method. (Received September 15, 2011)

