1077-65-2124 Daniel Peach* (dpeach@bates.edu), 704 Bates College, Lewiston, ME 04240, and Ilse Ipsen, Thomas Wentworth and Colin Gray. Matrix Multiplication Approximation Using Orthogonalized Outer Products. Preliminary report.
We present a prototype algorithm for approximating matrix multiplication for low-rank matrices. Inspired by algorithms introduced by Drineas et al. (2007), we view the multiplication of two arbitrary matrices A and B as the sum of outer products. For our algorithm, we reduce computation time by using only a small subset of these outer products: we approximate the true product $A B$ using a linear combination of this subset. We determine the optimal linear weights for our chosen outer products by projecting the true product $A B$ onto the vector space spanned by the outer products; we use the Frobenius inner product and the Gram-Schmidt process to orthogonalize our outer products and then project $A B$ onto this new basis. For $n \times n$ matrices, our algorithm cannot be computed exactly in less than $O\left(n^{3}\right)$ time. However, we introduce a randomized pseudo-inner product which models the Frobenius inner product: our pseudo-inner product substantially reduces our computation time but does not jeopardize the accuracy of our algorithm. Finally, we discuss optimal methods of choosing outer products. (Received September 21, 2011)

