1077-54-440
Hueytzen J. Wu* (kfhjw00@tamuk.edu), Department of Mathematics, Texas A & M University
- Kingsville, Kingsville, TX 78363, and Wan-Hong Wu (dd1273@yahoo.com), University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249. A P- and C*(D)-filters process of compactifications and any Hausdorff compactification.

By means of a characterization of compact spaces in terms of open $C^*(D)$ -filters induced by a subset D of $C^*(Y)$, a Pand open $C^*(D)$ -filters process of compactifications of any topological space Y is obtained by embedding Y as a dense subspace of $(Y^*(S),T)$ (or $(Y^*(M),T)$), where $Y^*(S)$ is the union of Y(E) and Y(S) (or $Y^*(M)$ is the union of Y(E) and Y(M)), Y(E) = Nx : Nx is a P-filter at x, x in Y, Nx is the union of x and O : O is an open set containing x, Y(S) = E : E is an open $C^*(D)$ -filter that does not converge in Y (or Y(M) = F : F is a basic open $C^*(D)$ -filter that does not converge in Y, T is the topology induced by the base $B = U^* : U$ is a nonempty open set in Y and $U^* = L : L$ is in Y(S)(or Y(T)) such that U is in L. Furthermore, an arbitrary Hausdorff compactification (Z, h) of a Tychonoff space X can be obtained from a subset D of C*(X) by the similar process. (Received September 01, 2011)