1077-51-2722 Sam Northshield* (northssw@plattsburgh.edu). Ford Circles and Spheres. Preliminary report.
Given coprime non-negative integers a, b, the circle above and tangent to the x-axis at a / b with radius $1 / 2 b^{2}$ is called a Ford circle. One can alternatively parameterize these circles:

$$
\left\{[a, b]:(a+b+c)^{2}=a^{2}+b^{2}+c^{2}, \operatorname{gcd}(a, b, c)=1\right\}
$$

where $[a, b]$ denotes the circle above and tangent to the x-axis at $(a 0+b 1) /(a+b)$ with radius $1 / 2(a+b)$. This generalizes nicely: let P_{1}, P_{2} and P_{3} denote the vertices of an equilateral triangle of side length 1 , and let $[a, b, c]$ denote the sphere above and tangent to the x, y-plane at $\left(a P_{1}+b P_{2}+c P_{3}\right) /(a+b+c)$ with radius $1 / 2(a+b+c)$. Then the family of spheres

$$
\left\{[a, b, c]:(a+b+c+d)^{2}=a^{2}+b^{2}+c^{2}+d^{2}, \operatorname{gcd}(a, b, c, d)=1\right\}
$$

shares many of the properties of the family of Ford circles. (Received September 22, 2011)

