1077-47-2691 Victor Vinnikov* (vinnikov@math.bgu.ac.il), Department of Mathematics, Ben Gurion University of the Negev, 84105 Beer Sheva, Israel. Noncommutative functions: examples and key features.

A noncommutative (nc) space \mathcal{V}_{nc} over a vector space \mathcal{V} is the disjoint union of the spaces of $n \times n$ matrices over \mathcal{V} for all n; if \mathcal{V} is an operator space, \mathcal{V}_{nc} carries a natural topology, induced by the sequence of matrix norms. A subset of \mathcal{V}_{nc} is called a *nc set* if it is closed under direct sums. A function f from a nc set in \mathcal{V}_{nc} to \mathcal{W}_{nc} , for vector spaces \mathcal{V} and \mathcal{W} , is called a *nc function* if it maps $n \times n$ matrices to $n \times n$ matrices for all n and satisfies certain compatibility conditions as we vary the matrix size n — namely, if it respects direct sums and similarities, or equivalently, intertwinings.

I will discuss some examples of nc functions (polynomials, rational functions, and power series in noncommuting inderterminates, as well as various transforms arising in operator-valued free probability), and some key features of their theory, including the regularity properties (roughly, local boundedness implies continuity and analyticity) and the power series expansions. This is a joint work with Dmitry Kaliuzhnyi-Verbovetskyi. (Received September 22, 2011)