1077-47-1648 Waleed K. Al-Rawashdeh* (walrawashdeh@mtech.edu), Department of Mathematical Sciences, Montana Tech of The University of Montana, 1300 W. Park Street, Butte, MT 59701. Compact Weighted Composition Operators on Bergman Spaces.

Let φ be an analytic self-map of the unit ball \mathbb{B}_n and let ψ be an analytic function on \mathbb{B}_n . For $\alpha > -1$ and p > 0 the weighted Bergman space $A^p_{\alpha}(\mathbb{B}_n)$ consists of all holomorphic functions in $L^p(\mathbb{B}_n, dv_{\alpha})$, the weighted Lebesgue measure dv_{α} is defined as $dv_{\alpha}(z) = c_{\alpha}(1 - |z|^2)^{\alpha} dv(z)$, where dv is the volume measure on \mathbb{B}_n and $c_{\alpha} = \frac{\Gamma(n+\alpha+1)}{n!\Gamma(\alpha+1)}$ is a normalizing constant so that dv_{α} is a probability measure on \mathbb{B}_n .

Given $W_{\psi,\varphi}$: $A^p_{\alpha}(\mathbb{B}_n) \to A^q_{\beta}(\mathbb{B}_n)$ we characterize the boundedness and compactness of the weighted composition operator $W_{\psi,\varphi}$, where $0 < q < p < \infty$ and $-1 < \alpha, \beta < \infty$, in terms of Carleson measures. The results will be expressed in terms of the weighted φ -Berezin transform. (Received September 20, 2011)