1077-37-717 Joseph H Silverman (jhs@math.brown.edu) and Bianca Viray* (bviray@math.brown.edu). On a uniform bound for the number of exceptional linear subvarieties in the dynamical Mordell-Lang conjecture.

Let $\phi : \mathbb{P}^n \to \mathbb{P}^n$ be a morphism of degree $d \geq 2$ defined over \mathbb{C} . The dynamical Mordell-Lang conjecture says that the intersection of an orbit $\mathcal{O}_{\phi}(P)$ and a subvariety $X \subset \mathbb{P}^n$ is usually finite. We consider the number of linear subvarieties $L \subset \mathbb{P}^n$ such that the intersection $\mathcal{O}_{\phi}(P) \cap L$ is "larger than expected." When ϕ is the d^{th} -power map and the coordinates of P are multiplicatively independent, we prove that there are only finitely many linear subvarieties that are "super-spanned" by $\mathcal{O}_{\phi}(P)$, and further that the number of such subvarieties is bounded by a function of n, independent of the point P and the degree d. More generally, we show that there exists a finite subset S, whose cardinality is bounded in terms of n, such that any n + 1 points in $\mathcal{O}_{\phi}(P) \setminus S$ are in linear general position in \mathbb{P}^n . (Received September 11, 2011)