1077-37-1199

Xavier Buff, Adam Epstein and Sarah Koch* (kochs@math.harvard.edu), Department of Mathematics, Science Center, Harvard University, 1 Oxford Street, Cambridge, MA 02138. *Twisted matings of polynomials.* Preliminary report.

Given two suitable polynomials of degree $d, p : \mathbb{C} \to \mathbb{C}$ and $q : \mathbb{C} \to \mathbb{C}$, we can form the mating of the polynomials $S^2 \to S^2$ by gluing together the Julia sets of p and q in a dynamically meaningful way. If the mating is equivalent to a rational map $\mathbb{P}^1 \to \mathbb{P}^1$, we say that the geometric mating of the polynomials exists. In this talk we define *twisted matings* of polynomials, and we prove that for the basilica polynomial $P(z) = z^2 - 1$, for any n > 0, all of the twisted matings of $P^{\circ n}$ with itself are classified by the periodic cycles of $z \mapsto z^2$, of length n. (Received September 17, 2011)