1077-37-1199 Xavier Buff, Adam Epstein and Sarah Koch* (kochs@math.harvard.edu), Department of Mathematics, Science Center, Harvard University, 1 Oxford Street, Cambridge, MA 02138.
Twisted matings of polynomials. Preliminary report.
Given two suitable polynomials of degree $d, p: \mathbb{C} \rightarrow \mathbb{C}$ and $q: \mathbb{C} \rightarrow \mathbb{C}$, we can form the mating of the polynomials $S^{2} \rightarrow S^{2}$ by gluing together the Julia sets of p and q in a dynamically meaningful way. If the mating is equivalent to a rational map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$, we say that the geometric mating of the polynomials exists. In this talk we define twisted matings of polynomials, and we prove that for the basilica polynomial $P(z)=z^{2}-1$, for any $n>0$, all of the twisted matings of $P^{\circ n}$ with itself are classified by the periodic cycles of $z \mapsto z^{2}$, of length n. (Received September 17, 2011)

