1077-35-307

Eunkyung Ko^{*} (ek94@msstate.edu), 319 N.Jackson st. 1A, Starkville, MS 39759. Uniqueness and multiplicity results for classes of infinite positone problems.

We study positive solutions to the singular boundary value problem

$$-\Delta u = \lambda \frac{f(u)}{u^{\beta}} \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial\Omega,$$

where λ is a positive parameter, $\beta \in (0, 1)$ and Ω is a bounded domain in $\mathbb{R}^N, N \geq 1$. Here $f \in C([0, \infty), (0, \infty))$ is nondecreasing and satisfies $\lim_{u\to\infty} \frac{f(u)}{u^{\beta+1}} = 0$. We discuss the existence of multiple positive solutions for a certain range of λ and a uniqueness result for $\lambda \gg 1$. A simple model that will satisfy our hypotheses is $f(u) = e^{\frac{\alpha u}{\alpha+u}}$ for $\alpha \gg 1$. We extend our multiplicity result to classes of systems, including p-Laplacian systems, when the nonlinearities satisfy certain combined sublinear conditions at infinity. We also extend our results to the case when Ω is an exterior domain. (Received August 19, 2011)