John R. Graef* (john-graef@utc.edu), Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, and Lingju Kong (lingju-kong@utc.edu), Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403. Positive solutions for a class of higher order boundary value problems with fractional q-derivatives.
In this paper, we study the boundary value problem with fractional q-derivatives

$$
\begin{gathered}
-\left(D_{q}^{\nu} u\right)(t)=f(t, u), t \in(0,1) \\
\left(D_{q}^{i} u\right)(0)=0, i=0, \ldots, n-2, \quad\left(D_{q} u\right)(1)=\sum_{j=1}^{m} a_{j}\left(D_{q} u\right)\left(t_{j}\right)+\lambda,
\end{gathered}
$$

where $q \in(0,1), m \geq 1$ and $n \geq 3$ are integers, $n-1<\nu \leq n, \lambda \geq 0$ is a parameter, $f:[0,1] \times \mathbb{R} \rightarrow[0, \infty)$ is continuous, $a_{i} \geq 0$ and $t_{i} \in(0,1)$ for $i=1, \ldots, m$, and D_{q}^{ν} is the q-derivative of Riemann-Liouville type of order ν. The uniqueness, existence, and nonexistence of positive solutions are investigated in terms of different ranges of λ. (Received August 16, 2011)

