1077-20-1137

Stavros Argyrios Papadakis and Bart Van Steirteghem* (bartvs@mec.cuny.edu),

Department of Mathematics, Medgar Evers College (CUNY), 1650 Bedford Ave, Brooklyn, NY 11225. The invariant Hilbert scheme of a spherical module. Preliminary report.

Let G be a complex connected reductive linear algebraic group and let V be a finite-dimensional G-module. The invariant Hilbert scheme $\operatorname{Hilb}_{h}^{G}(V)$, introduced by V. Alexeev and M. Brion, parametrizes the G-stable ideals I of the polynomial ring $\mathbb{C}[V]$ for which the G-module $\mathbb{C}[V]/I$ has prescribed multiplicities given by a function $h: \operatorname{Irr}(G) \to \mathbb{Z}_{\geq 0}$.

Suppose W is a spherical G-module (i.e. $\mathbb{C}[W]$ is a multiplicity-free G-module) and denote $h_W : \operatorname{Irr}(G) \to \{0, 1\}$ its invariant Hilbert function, so that $\mathbb{C}[W] \cong \bigoplus_{M \in \operatorname{Irr}(G)} M^{h_W(M)}$ as a G-module. Let $T \subset G$ be a maximal torus and let $U \subset G$ be a maximal unipotent subgroup normalized by T. There is a (unique) finite-dimensional G-module V such that $\mathbb{C}[W]^U \cong \mathbb{C}[V^U]$ as T-modules. We will discuss our work on the invariant Hilbert scheme $\operatorname{Hilb}_{h_W}^G(V)$, which provides information on the equivariant degenerations of W. (Received September 16, 2011)