the Fibonacci sequence.
Paul S. Bruckman and Peter G. Anderson made a conjecture about the Z-densities of the Fibonacci sequence, F_{n}, based on computational results. For a prime $p, Z(p)$ is the "Fibonacci entry-point of n " or the smallest positive integer n such that $p \mid F_{n}, M(m, x)$ is the number of primes $p \leq x$ such that $m \mid Z(p)$, and $\pi(x)$ is the number of primes less than x. We may define the " Z density of m " to be $\zeta(m)=\lim _{x \rightarrow \infty} M(m, x) / \pi(x)$. We will prove the conjecture of Bruckman and Anderson by connecting $Z(p)$ with the order of the point $\alpha=(3 / 2,1 / 2)$ in $G\left(\mathbb{F}_{p}\right)=\left\{(x, y) \in \mathbb{F}_{p} \mid x^{2}-5 y^{2}=1\right\}$ and using the Chebotarev density theorem to find the limit. (Received September 21, 2011)

