Let S be a finite set of rational primes. For a non-zero integer n, define $[n]_{S}=\prod_{p \in S}|n|_{p}^{-1}$, where $|n|_{p}$ is the usual p-adic norm of n. In 1984, Stewart applied Baker's theorem to prove non-trivial, computationally effective upper bounds for $[n(n+1) \ldots(n+k)]_{S}$ for any integer $k>0$. Effective upper bounds have also been given by Bennett, Filaseta, and Trifonov for $[n(n+1)]_{S}$ and $\left[n^{2}+7\right]_{S}$, where $S=\{2,3\}$ and $S=\{2\}$, respectively. We extend Stewart's theorem to prove effective upper bounds for $[f(n)]_{S}$ for an arbitrary $f(x)$ in $\mathbb{Z}[x]$ having at least two distinct roots. (Received September 21, 2011)

