1077-11-2109 Jason Bell and Kevin Doerksen* (kdoerkse@gmail.com). On the prime divisors in zero orbits of families of commuting polynomials. Preliminary report.
Let $\left(b_{n}\right)=\left(b_{1}, b_{2}, \ldots\right)$ be a sequence of integers. A primitive prime divisor of the k-th term is a prime which divides b_{k} but does not divide any previous term in the sequence.

We consider a generalized notion of primitive prime divisors as it applies to families of commutative polynomials. Let $\Phi=\left\{\varphi_{1}, \ldots, \varphi_{k}\right\}$ be a finite set of integer polynomials which are commutative with respect to composition. An element β is said to be in the forward orbit of 0 if there are integers n_{1}, \ldots, n_{k} such that

$$
\beta=\varphi_{1}^{n_{1}} \varphi_{2}^{n_{2}} \ldots \varphi_{k}^{n_{k}}(0)
$$

We say that p is a primitive divisor of β if $p \mid \beta$ and p satisfies the following condition: if $p \mid \gamma$ for some $\gamma=$ $\varphi_{1}^{\ell_{1}} \varphi_{2}^{\ell_{2}} \ldots \varphi_{k}^{\ell_{k}}(0)$ where $\ell_{i} \leq n_{i}$ for all $i \leq k$ then in fact $\ell_{j}=n_{j}$ for all $j \leq k$.

In this talk, we consider families of commutative polynomials which all have zero linear term. We give an effective bound on the number of terms in the forward orbit of 0 which do not have primitive prime divisors. (Received September 21, 2011)

