1077-11-2028 Robert M. Guralnick and Beth Malmskog* (emalmskog@wesleyan.edu), Department of Mathematics, Wesleyan University, Middletown, CT 06457, and Rachel Pries. Automorphism groups of a family of maximal curves.

The Hasse Weil bound restricts the number of points of a curve which are defined over a finite field; if the number of points meets this bound, the curve is called maximal. Giulietti and Korchmaros introduced a curve C_3 which is maximal over \mathbb{F}_{q^6} and determined its automorphism group. Garcia, Guneri, and Stichtenoth generalized this construction to a family of curves C_n , indexed by an odd integer $n \geq 3$, such that C_n is maximal over $\mathbb{F}_{q^{2n}}$. In joint work with Rachel Pries and Robert Guralnick, the speaker determined the automorphism group $\operatorname{Aut}(C_n)$ when n > 3; in contrast with the case n = 3, it fixes the point at infinity on C_n . This talk will discuss the result and the outline of our proof. (Received September 21, 2011)