Jing-Jing Huang* (huang@math.psu.edu), Department of Mathematics, 012 McAllister Building, State College, PA 16802. Counting the number of solutions to the Erdős-Straus-Schinzel equation and related problems.
In this talk, we are mainly concerned with the Diophantine equation

$$
\frac{a}{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{k}}
$$

and its number of positive integer solutions $R_{k}(n ; a)$. We begin with the binary case $k=2$, more precisely, we will investigate the distribution of the function $R_{2}(n ; a)$. By averaging over n, we study the first moment and second moment behaviors of $R_{2}(n ; a)$. For instance, one of our results is

$$
\sum_{\substack{n \leq N \\(n, a)=1}} R_{2}(n ; a)=N P_{2}(\log N ; a)+O_{a}\left(N \log ^{5} N\right)
$$

where $P_{2}(\cdot ; a)$ is a quadratic function whose coefficients depend on a. Furthermore, we show that, after normalisation, $R_{2}(n ; a)$ satisfies Gaussian distribution, which is an analog of the Erdős-Kac theorem.

On the other hand, let $E_{a}(N)$ denote the number of $n \leq N$ such that $R_{2}(n ; a)=0$. We will establish that when $a \geq 3$

$$
E_{a}(N) \sim C(a) \frac{N(\log \log N)^{2^{m-1}-1}}{(\log N)^{1-1 / 2^{m}}}
$$

with m defined in the talk.
The next project would be to study the ternary case $k=3$. While the conjectured, by Erdős, Straus and Schinzel, that for fixed $a \geq 4$, we have $R_{3}(n ; a)>0$ when n is sufficiently large, is still wide open, here we will try to understand the mean value $\sum_{n \leq N} R_{3}(n ; a)$ and give some interesting results. (Received September 18, 2011)

