1077-08-382 Valmir Bucaj* (vbuqaj@gmail.com), 1000 West Court Street, Seguin, TX 78155. Finding Factors of Factor Rings over the Eisenstein Integers. Preliminary report.
Eisenstein integers are defined to be the set $Z[\omega]=\{a+b \omega: a, b \in \mathbb{Z}\}$ where $w=(-1+i \sqrt{3}) / 2$. This set lies inside the set of complex numbers \mathbb{C} and they also form a commutative ring in the algebraic number field $\mathbb{Q}(\omega)$. In this paper we prove a few results related to the factor rings over the Eisenstein integers. In particular we show that the ring $\mathbb{Z}[\omega]$ factored by an ideal generated by any element $m+n \omega$ of this ring, where $g . c . d(m, n)=1$ is isomorphic to the ring $\mathbb{Z}_{N(m+n \omega)}$, where N is the norm function given by $N(m+n \omega)=(m+n \omega)(m+n \bar{\omega})=m^{2}+n^{2}-m n$. This result helps us quickly answer questions about the number of elements of the factor ring $\mathbb{Z}[\omega] /\langle m+n \omega\rangle$. Then, we give a representation for the factor ring $\mathbb{Z}[\omega] /\langle m+n \omega\rangle$ in terms of simpler rings. Finally, at the end we give a few applications to elementary number theory, more specifically we use some of the results in this paper to find all solutions of the equation $p=m^{2}+n^{2}-m n$ where p is a prime not congruent to $2 \bmod 3$, and $m, n \in \mathbb{Z}^{+}$. (Received August 30, 2011)

