Rik Sengupta* (rsengupt@princeton.edu), 0758 Frist Campus Center, Princeton University, Princeton, NJ 08544. On tree rotations and common parse words.
A proper 3-coloring of the $2 n-1$ vertices of a complete binary tree T with n leaves using the letters $\{0,1,2\}$ so that no two siblings receive the same color is called a labeling of T. For such a labeling, the labels on the leaves can be read off in order, and this gives a word parsed by T. We examine the number of common parse words of pairs of trees separated by small distances in the rotation graph R_{n} for binary trees with n leaves. To this end, we fix some tree T^{*} and define the function $f(T)$ to be the number of common parse words between T and T^{*}. We prove that $f(T)$ behaves extremely nicely when T and T^{*} are within small distances in R_{n}. Our results give rise to a natural conjecture that immediately implies the Four Color Theorem by using an equivalence established by Kauffman (1990). (Received September 10, 2011)

