1077-05-682Rik Sengupta* (rsengupt@princeton.edu), 0758 Frist Campus Center, Princeton University,
Princeton, NJ 08544. On tree rotations and common parse words.

A proper 3-coloring of the 2n - 1 vertices of a complete binary tree T with n leaves using the letters $\{0, 1, 2\}$ so that no two siblings receive the same color is called a *labeling* of T. For such a labeling, the labels on the leaves can be read off in order, and this gives a word *parsed* by T. We examine the number of common parse words of pairs of trees separated by small distances in the rotation graph R_n for binary trees with n leaves. To this end, we fix some tree T^* and define the function f(T) to be the number of common parse words between T and T^* . We prove that f(T) behaves extremely nicely when T and T^* are within small distances in R_n . Our results give rise to a natural conjecture that immediately implies the Four Color Theorem by using an equivalence established by Kauffman (1990). (Received September 10, 2011)