Xing Peng* (pengx@mailbox.sc.edu), 1523 Greene St, Columbia, SC 29208, and Linyuan Lu (lu@math.sc.edu), 1523 Greene St, Columbia, SC 29208. A fractional analogue of Brook's theorem.
Let $\Delta(G)$ be the maximum degree of a graph G. Brooks' theorem states that the only connected graphs with chromatic number $\chi(G)=\Delta(G)+1$ are complete graphs and odd cycles. We prove a fractional analogue of Brooks' theorem in this paper. Namely, we classify all connected graphs G such that the fractional chromatic number $\chi_{f}(G)$ is at least $\Delta(G)$. These graphs are complete graphs, odd cycles, $C_{8}^{2}, C_{5} \boxtimes K_{2}$, and graphs whose clique number $\omega(G)$ equals the maximum degree $\Delta(G)$. Among the two sporadic graphs, the graph C_{8}^{2} is the square graph of cycle C_{8} while the other graph $C_{5} \boxtimes K_{2}$ is the strong product of C_{5} and K_{2}. (Received September 08, 2011)

