called a edge-Kempe switch. Given two proper edge colorings of a graph, can you always get from one to the other via a sequence of edge-Kempe switches? (No.) If one edge-coloring of a graph can be transformed into another edge-coloring of that graph by a sequence of edge-Kempe switches, then the two edge-colorings are edge-Kempe equivalent. If a graph has at least two proper edge colorings that are not Kempe-equivalent, how many non-equivalent proper edge colorings are there? We attempt to compute the number (denoted $K^{\prime}(G, 3)$) of edge-Kempe equivalence classes of 3-edge colorings for certain types of cubic graphs. Along the way, we will introduce decompositions of cubic graphs and of 3 -edge colorings of cubic graphs that assist in our computations. (Received September 07, 2011)

