1077-05-483Eric Schmutz (schmutze@drexel.edu) and Le Yu* (ly32@drexel.edu), Korman Center 209,
Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104. Automorphisms of Random
Trees. Preliminary report.

For each labelled tree T, let |Aut(T)| be the number of automorphisms T has. Let $\mu_n = \frac{1}{n^{n-2}} \sum_T |Aut(T)|$ be the expected order of the automorphism group for uniform random labelled trees on [n]. It is well known that there is a constant $\rho_1 > 1$ such that, for all sufficiently large n,

$$\rho_1^{n(1-\epsilon)} < \mu_n < \rho_1^{n(1+\epsilon)}.$$

We have proved that there is a *strictly smaller* constant ρ_0 such that, with asymptotic probability one,

$$\rho_0^{n(1-\epsilon)} < |Aut(T)| < \rho_0^{n(1+\epsilon)}.$$

Thus most trees have an automorphism group that is *much* smaller than the average order: if \mathbb{P}_n is the uniform probability measure in the set of all n^{n-2} labelled trees on [n], then there is a constant $\delta > 0$ such that

$$\mathbb{P}_n\left(|Aut(T)| > \frac{\mu_n}{(1+\delta)^n}\right) = o(1)$$

An asymptotic formula for $\mathbb{E}(\log |Aut(T)|)$ is proved, and we conjecture that |Aut(T)| is asymptotically lognormal. (Received September 04, 2011)