1077-05-2587 Curtis Clark* (cuclark@morehouse.edu), 830 Westview Drive, Atlanta, GA 30314. On $2-1$ Graph Achievement Games.
Let F be agraph with no isolated vertices. The $2-1 F$-achievement game on the complete graph K_{n} is described as follows. There are two players. Player A first colors two edges of K_{n} green. Then Player B colors a different edge of K_{n} red. They continue alternatively coloring the edges with Player A coloring two edges and Player B coloring one edge. The graph F is achievable on K_{n} if Player A can make a copy of F in his color. The minimum n such that F is achievable on K_{n} is the 2-1 achievement number of $F, a_{2}(F)$. The $2-1$ move number of F is the least number of edges needed by Player A to make F on the complete graph with $a_{2}(F)$ vertices. We determine the $2-1$ achievement numbers and move numbers for graphs with less than or equal to four vertices, paths, and cycles. (Received September 22, 2011)

