1077-05-2450Miles Eli Jones* (mej005@ucsd.edu), 9500 Gilman Dr. #0112, La Jolla, CA 92093, and Jeffrey
Remmel (jremmel@ucsd.edu), 9500 Gilman Dr. #0112, La Jolla, CA 92093. Consecutive
Matches in Permutations and cycle structures of permutations.

Let $\tau \in S_m$. A permutation $\sigma = \sigma_1 \dots \sigma_n \in S_n$ has a τ -match at position i if $\sigma_i \dots \sigma_{i+m-1}$ has the same relative order as τ . A cycle $C = (\sigma_0, \dots, \sigma_{n-1}) \in S_n$ has a cycle- τ -match at position i if $\sigma_i \dots \sigma_{i+m-1}$ has the same relative order as τ with the subscripts taken mod n. Let $\mathcal{NM}_n(\tau)$ be the the set of all σ in S_n that have no τ -matches. Let $\mathcal{NCM}_n(\tau)$ be the the set of all σ in S_n that have no cycle- τ -matches within any of the cycles.

Consider the generating functions

$$NM_{\tau}(t, y, x) = \sum_{n \ge 0} \frac{t^n}{n!} \sum_{\sigma \in \mathcal{NM}_n(\tau)} y^{1 + \operatorname{des}(\sigma)} x^{\operatorname{Lmin}(\sigma)}$$
$$NCM_{\tau}(t, y, x) = \sum_{n \ge 0} \frac{t^n}{n!} \sum_{\sigma \in \mathcal{NCM}_n(\tau)} y^{\operatorname{cdes}(\sigma)} x^{\operatorname{cyc}(\sigma)}.$$

For $\sigma \in S_n$, des (σ) is the number of descents, Lmin (σ) is the number of left-to-right minima, cdes (σ) is the number of descents of each cycle, and cyc (σ) is the number of cycles.

We discuss why these generating functions are equal when τ starts with 1 and give some results for families of patterns that start with 1. (Received September 22, 2011)