Miles Eli Jones* (mej005@ucsd.edu), 9500 Gilman Dr. \#0112, La Jolla, CA 92093, and Jeffrey Remmel (jremmel@ucsd.edu), 9500 Gilman Dr. \#0112, La Jolla, CA 92093. Consecutive
Matches in Permutations and cycle structures of permutations.
Let $\tau \in S_{m}$. A permutation $\sigma=\sigma_{1} \ldots \sigma_{n} \in S_{n}$ has a τ-match at position i if $\sigma_{i} \ldots \sigma_{i+m-1}$ has the same relative order as τ. A cycle $C=\left(\sigma_{0}, \ldots, \sigma_{n-1}\right) \in S_{n}$ has a cycle- τ-match at position i if $\sigma_{i} \ldots \sigma_{i+m-1}$ has the same relative order as τ with the subscripts taken $\bmod n$. Let $\mathcal{N} \mathcal{M}_{n}(\tau)$ be the the set of all σ in S_{n} that have no τ-matches. Let $\mathcal{N C} \mathcal{M}_{n}(\tau)$ be the the set of all σ in S_{n} that have no cycle- τ-matches within any of the cycles.

Consider the generating functions

$$
\begin{aligned}
& N M_{\tau}(t, y, x)=\sum_{n \geq 0} \frac{t^{n}}{n!} \sum_{\sigma \in \mathcal{N} \mathcal{M}_{n}(\tau)} y^{1+\operatorname{des}(\sigma)} x^{\mathrm{Lmin}(\sigma)} \\
& N C M_{\tau}(t, y, x)=\sum_{n \geq 0} \frac{t^{n}}{n!} \sum_{\sigma \in \mathcal{N C} \mathcal{M}_{n}(\tau)} y^{\operatorname{cdes}(\sigma)} x^{\operatorname{cyc}(\sigma)} .
\end{aligned}
$$

For $\sigma \in S_{n}, \operatorname{des}(\sigma)$ is the number of descents, $\operatorname{Lmin}(\sigma)$ is the number of left-to-right minima, $\operatorname{cdes}(\sigma)$ is the number of descents of each cycle, and $\operatorname{cyc}(\sigma)$ is the number of cycles.

We discuss why these generating functions are equal when τ starts with 1 and give some results for families of patterns that start with 1. (Received September 22, 2011)

